On the role of some ARGONAUTE proteins in meiosis and DNA repair in Arabidopsis thaliana

نویسندگان

  • Cecilia Oliver
  • Juan L. Santos
  • Mónica Pradillo
چکیده

In plants, small non-coding RNAs (≈20-30 nt) play a major role in a gene regulation mechanism that controls development, maintains heterochromatin and defends against viruses. However, their possible role in cell division (mitosis and meiosis) still remains to be ascertained. ARGONAUTE (AGO) proteins are key players in the different small RNA (sRNA) pathways. Arabidopsis contains 10 AGO proteins belonging to three distinct phylogenetic clades based on amino acid sequence, namely: AGO1/AGO5/AGO10, AGO2/AGO3/AGO7, and AGO4/AGO6/AGO8/AGO9. To gain new insights into the role of AGO proteins, we have focused our attention on AGO2, AGO5, and AGO9 by means of the analysis of plants carrying mutations in the corresponding genes. AGO2 plays a role in the natural cis-antisense (nat-siRNA) pathway and is required for an efficient DNA repair. On the other hand, AGO5, involved in miRNA (microRNA)-directed target cleavage, and AGO9, involved in RNA-directed DNA methylation (RdDM), are highly enriched in germline. On these grounds, we have analyzed the effects of these proteins on the meiotic process and also on DNA repair. It was confirmed that AGO2 is involved in DNA repair. In ago2-1 the mean cell chiasma frequency in pollen mother cells (PMCs) was increased relative to the wild-type (WT). ago5-4 showed a delay in germination time and a slight decrease in fertility, however the meiotic process and chiasma levels were normal. Meiosis in PMCs of ago9-1 was characterized by a high frequency of chromosome interlocks from pachytene to metaphase I, but chiasma frequency and fertility were normal. Genotoxicity assays have confirmed that AGO9 is also involved in somatic DNA repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters

Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Yeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction

SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...

متن کامل

MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana

Mini-chromosome maintenance (MCM) 2-9 proteins are related helicases. The first six, MCM2-7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Ara...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014